Response adaptation of medial olivocochlear neurons is minimal.

نویسنده

  • M C Brown
چکیده

Response adaptation is a general characteristic of neurons. A number of studies have investigated the adaptation characteristics of auditory-nerve fibers, which send information to the brain about sound stimuli. However, there have been no previous adaptation studies of olivocochlear neurons, which provide efferent fibers to hair cells and auditory nerve dendrites in the auditory periphery. To study adaptation in efferent fibers, responses of single olivocochlear neurons were recorded to characteristic-frequency tones and noise, using anesthetized guinea pigs. To measure short-term adaptation, stimuli of 500 ms duration were presented, and the responses were displayed as peristimulus time histograms. These histograms showed regular peaks, indicating a "chopping" pattern of response. The rate during each chopping period as well as the general trend of the histogram could be well fit by an equation that expresses the firing rate as a sum of 1) a short-term adaptive rate that decays exponentially with time and 2) a constant steady-state rate. For the adaptation in medial olivocochlear (MOC) neurons, the average exponential time constant was 47 ms, which is roughly similar to that for short-term adaptation in auditory-nerve fibers. The amount of adaptation (expressed as a percentage decrease of onset firing rate), however, was substantially less in MOC neurons (average 31%) than in auditory-nerve fibers (average 63%). To test for adaptation over longer periods, we used noise and tones of 10 s duration. After the short-term adaptation, the responses of MOC neurons were almost completely sustained (average long-term adaptation 3%). However, in the same preparations, significant long-term adaptation was present in auditory-nerve fibers. These results indicate that the MOC response adaptation is minimal compared with that of auditory-nerve fibers. Such sustained responses may enable the MOC system to produce sustained effects in the periphery, supporting a role for this efferent system during ongoing stimuli of long duration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single olivocochlear neurons in the guinea pig. I. Binaural facilitation of responses to high-level noise.

Single medial olivocochlear (MOC) neurons were recorded from the cochlea of the anesthetized guinea pig. We used tones and noise presented monaurally and binaurally and measured responses for sounds up to 105 dB sound pressure level (SPL). For monaural sound, MOC neuron firing rates were usually higher for noise bursts than tone bursts, a situation not observed for afferent fibers of the audito...

متن کامل

Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier

The dynamic adjustment of hearing sensitivity and frequency selectivity is mediated by the medial olivocochlear efferent reflex, which suppresses the gain of the 'cochlear amplifier' in each ear. Such efferent feedback is important for promoting discrimination of sounds in background noise, sound localization and protecting the cochleae from acoustic overstimulation. However, the sensory driver...

متن کامل

Restricted loss of olivocochlear but not vestibular efferent neurons in the senescent gerbil (Meriones unguiculatus)

Degeneration of hearing and vertigo are symptoms of age-related auditory and vestibular disorders reflecting multifactorial changes in the peripheral and central nervous system whose interplay remains largely unknown. Originating bilaterally in the brain stem, vestibular and auditory efferent cholinergic projections exert feedback control on the peripheral sensory organs, and modulate sensory p...

متن کامل

Projection of the marginal shell of the anteroventral cochlear nucleus to olivocochlear neurons in the cat.

The marginal shell of the anteroventral cochlear nucleus is anatomically and physiologically different from its central core. Previous studies suggest that neurons in the marginal shell are well suited to encode the intensity of acoustic stimuli. To investigate the projections of the marginal shell, a focal injection (<100 nl) of a mixture of biotinylated dextran amine (BDA) and (3)H-leucine wa...

متن کامل

Ultrastructural characterization of gerbil olivocochlear neurons based on differential uptake of 3H-D-aspartic acid and a wheatgerm agglutinin-horseradish peroxidase conjugate from the cochlea.

Two populations of olivocochlear (OC) neurons have been identified in the gerbil brain stem on the basis of differential labeling patterns of 3H-D-aspartic acid (D-ASP) and wheatgerm agglutinin-horseradish peroxidase conjugate (WGA/HRP) from the cochlear perilymph. While both populations are capable of uptake and retrograde uptake of WGA/HRP, one population accumulates and retrogradely transpor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 86 5  شماره 

صفحات  -

تاریخ انتشار 2001